skip to main content


Search for: All records

Creators/Authors contains: "Yang, Min"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 24, 2024
  2. In the context of analyzing wafer maps, we present a novel approach to enable analytics to be driven by user queries. The analytic context includes two aspects: (1) grouping wafer maps based on their failure patterns and (2) for a failure pattern found at wafer probe, checking to see whether there is a correlation to the result from the final test (feedforward) and to the result from the E-test (feedback). We introduce language driven analytics and show how a formal language model in the backend can enable natural language queries in the frontend. The approach is applied to analyze test data from a recent product line, with interesting findings highlighted to explain the approach and its use. 
    more » « less
  3. We present a novel approach where wafer map pattern analytics are driven by natural language queries. At the core is a semantic parser that translates a user query into a meaning representation comprising instructions to generate a summary plot. The allowable plot types are pre-defined which serve as an interface that communicates user intents to the analytics software backend. Application results on wafer maps from a recent production line are presented to explain the capabilities and benefits of the proposed approach. 
    more » « less
  4. Proteins from Sulfolobus solfataricus (S. solfataricus), an extremophile, are active even at high temperatures. The single-stranded DNA (ssDNA) binding protein of S. solfataricus (SsoSSB) is overexpressed to protect ssDNA during DNA metabolism. Although SsoSSB has the potential to be applied in various areas, its structural and ssDNA binding properties at high temperatures have not been studied. We present the solution structure, backbone dynamics, and ssDNA binding properties of SsoSSB at 50 °C. The overall structure is consistent with the structures previously studied at room temperature. However, the loop between the first two β sheets, which is flexible and is expected to undergo conformational change upon ssDNA binding, shows a difference from the ssDNA bound structure. The ssDNA binding ability was maintained at high temperature, but different interactions were observed depending on the temperature. Backbone dynamics at high temperature showed that the rigidity of the structured region was well maintained. The investigation of an N-terminal deletion mutant revealed that it is important for maintaining thermostability, structure, and ssDNA binding ability. The structural and dynamic properties of SsoSSB observed at high temperature can provide information on the behavior of proteins in thermophiles at the molecular level and guide the development of new experimental techniques. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)